Cosmo-Z 18bit版の性能評価
アルバイトさんが、Cosmo-Zの18bi版拡張ADCボードの特性を測ってくれました。
Cosmo-Zの18bit拡張ボードというのは、下の写真にあるようなボードで、±1Vpp入力で5MHzサンプリングのボードです。
AD変換器にはAnalogDevicesのAD7960を使い、初段のプリアンプ(可変ゲインアンプ)にはAD8253を、2段目のプリアンプ(ADCドライブ用)にはTIのTHS4521を使っています。
ノーマルのCosmo-Zに比べると速度は遅いですが、ADCの性能やチャネル間のアイソレーションは抜群に良くなっています。また、入力にはx1 x10 x100 x1000の可変ゲインアンプが入っています。ゲイン1の設定の場合の分解能は7.6μVですが、ゲイン1000にすると1LSB=7.6nVとなります。
さて、性能を見てみましょう。まずはゲイン1の場合のノイズのヒストグラムです。
このADCは±4.096Vの範囲を18bitで変換するので、1LSB=4.096V*2/262144=31.25μVとなります。上のヒストグラムは半値全幅が7LSBなので約220μVに相当するのですが、可変ゲインアンプの後にゲインは4のプリアンプを乗せているので、入力に換算するとノイズの幅は55μVとなります。
次はゲイン10の場合です。
ノイズによる広がりは22LSBになりました。入力換算ノイズは17μVとなります。
ゲイン100の場合、広がりは96LSB程度になりましたが、プリアンプのゲインがトータルで400あるので入力に換算すると7.5μVとなります。
最後はゲイン1000の場合。広がりは320LSBほどで、入力に換算したノイズは2.5μVとなります。
ゲインを10倍、100倍、1000倍と変えていっても、ノイズの増え方は10倍、100倍、1000倍とはならず、それよりゆっくり増加するのは、ノイズが初段の可変ゲインアンプだけで生じているからではなく2段目のプリアンプやADC自身で生じているためです。そのため、初段のアンプでゲインを稼ぐことは有意義といえます。
また、オーディオアナライザを使って綺麗な正弦波を作り、このボードに入力し、FFTを行ってスペクトラムを見てみるとひずみ率は-80dB程度でした。
周波数特性は約1MHzで3dBダウンとなりました。
この周波数特性を決めているのは、2段目のプリアンプで、現在は帰還抵抗が5kΩ//33pFという構成なので妥当な結果と言えます。
なお、コンデンサを減らすと周波数特性は良くなりますが、熱雑音によるノイズも増えるし、そもそも2.5MHz以上はエイリアシングだから無い方が良いので、難しいところです。
この結果が妥当なものか検討してみます。
AD8253はゲインによってノイズの大きさが大きく変わります。
ゲイン1の場合、AD8253の出すノイズは45nV/√Hzです。5MHzくらいまで見ているとすると、AD8253で225μVのノイズが発生していることになります。また2段目のTHS4521は4.6nV/√Hzなので23μV、帰還抵抗は5kΩなので熱雑音は20μV。二乗して全部足し合わせると、227μVとなります。
大ざっぱな計算ですが、最初のヒストグラムで示した220μVというのとほぼ一致しますので、ゲイン1のノイズの99%の発生原はAD8253であると推定されます。
ゲイン10の場合、AD8253の出すノイズは60μVに減りますが、これがゲインで10倍されるので600μVのノイズが2段目のTHS4521に加わることになります。THS4521の出すノイズと熱雑音は変わらないので、観測されるトータルで600μVとなります。ヒストグラムから読み取ったノイズの幅は22LSB=687μVなので、これも結果とよく一致します。
ゲイン100の場合、AD8253の出すノイズは55μVに減りますが、ゲインで100倍されるので5500μVのノイズが2段目のTHS4521に加わることになります。ヒストグラムの広がりは約100LSB=3.1mVなので、実際は計算値ほど悪くないという結果でした。
ゲイン1000の場合、AD8253の出すノイズは50μVに減りますが、ゲインで1000倍されるので5mVのノイズが2段目のTHS4521に加わることになります。ヒストグラムの広がりは約300LSB=10mVなので、実際は計算値ほど悪くないという結果でした。
ゲイン100以上で、ノイズが想定より少なくなるのはAD8253の周波数特性がG=100,G=1000の場合には早い段階で下がり始めるからでしょう。
つまり、ノイズ発生源であるAD8253は、G=100以上で周波数特性が悪くなるため、高い周波数成分のノイズも減ったと考えられます。
| 固定リンク
コメント